PASCAL-80




WELCOME TO PASCAL-80

in the ten years since Niklaus Wirth designed the Pascal
language, it has become one of the most popular computer
languages in the world. Pascal is easy to learn and use, and it en-
courages well-structured and readable programming. Many
students now learn Pascal rather than BASIC as their first
language.

There are several different versions of Pascal: Standard Pascal
(something of a misnomer, since most "Standard” versions differ
in detaiis), UCSD Pascal, and Tiny Pascal, PASCAL-80 is basically
Standard Pascal, with some restrictlons and extensions, especially
in the disk flle systam.

This instruction manual tells you how to use the PASCAL-80 text
aditor, monitor, and compller, and explains the special features of
the PASCAL-80 [anguage. It assumes that you have some familiari-
ty with Pascal, or have a text which describes Standard Pascal.
Recommended texts: Programming in Pascal, Peter Grogono,
{Addison-Wesley), Pascal User Manual and Repori, Kathleen
Jensen and Niklaus Wirth, (Springer-Verlag), or PASCAL, W. Findlay
and D.A. Watt, (Computer Sclence Press). Texts which describe
UGCSD Pascal will probably be less useful.

GETTING STARTED

To hegin using the PASCAL-80 system, insert the PASCAL disk
into drive 0, bootstrap the system, and typs PASCAL. After loading
is complete, your computer wlll print a list of things which
PASCAL-80 can do and wait for you to choose one, To select an
itern from this list, Just press the approprlate letter (you don’t have

to press [ENTER]. This display of choices is callied the Monitor
mode of the PASCAL-80 system.

A good way to get used to the system is to run a simple program.
To do this, press E, and you will enter the Editor mode. The screen
clears, and a flashing cursor appears. To put program text into the
Editor, all you have to do is type a line and press [ENTER]. Note that
all keys automatically repeat if you hold them down for a half-
gecond or so.

To erase mistakes, use the backspace key as usual. To fix an er-
ror in an eatlier part of the line, you can press [SHIFT] with the left-
arrow to move the cursor left without erasing (SHIFT right-arrow
moves the cursor right). The cursor doesn’t have to be at the end of
the line when you press [ENTER).

To correct a mistake after pressing [ENTER], use the up-arrow
key to move the cursor back up to the line with the error, make the
changes, and (very important) press {[ENTER] to put the revised ver-
slon of the line into your program. (For more details, see the sec-
tion “How to use the Editor™).



Try the following:

PROGRAM TEST;

VAR NUMBER : INTEGER;

BEGIN

FOR NUMBER : =1 TQO 5 DO WRITELN{(1NUMEER)

END.

Check your typing (notice the semicolons after the first two
lines, and the period at the end..and*.=", not " ="). Now press
[BREAK], and a line of choices will appear at the bottom of the
screen. Press M, and you will find yourself back in Monitor mods.
Now press R, and the program should execute. If you get an error
message instead, press [ENTER)], then press [E] to return to the
Editor mode. The cursor will be on the line where PASCAL-80
detected the error, and this {ine will be at the top of the screen. Very
often, the error will be at the end of the previous line (missing
semicolon, etc.); to see this line, press the up-arrow. Make the cor-
rection, press [ENTER], and try again, with [BREAK]{M]-[R].

If you're used to BASIC, notice the following differences:

(1) PASCAL is a compiled language. To run your program, the
system must first translate your program text {called “source
code”} to a Machine Language program (called “object code”),
then execute the object code. The hexadecimal humber at the left
of each line in the compiler listing is the number of bytes of object
code which have been compiled up to that polnt: this can help you
find the location of an error which occurs during execution (such as
division by zero).

(2) The beginning of a program is always Indicaied by the
keyword PROGRAM, with the name of the program.

(3) You must “declare™ any variables which you are going to use
in your program, using the keyword VAR. Variable names may be
any length, and all characters are significant (VARIABLEA |s dif-
ferent from VARIABLEB).

(4} PASCAL uses WRITELN instead of PRINT, and it must be
followed by parentheses.

(6) The FOR statement has a different syntax from what you're
used to in BASIC.

If you're used to other versions of PASCAL, note:

(1} The PROGRAM statement doesn’t have to inciude (INPUT,
OUTPUT). These files are automatically avallable.

(2) PASCAL-80 compiles programs directly into memory, without
the need to ¢reate source and object disk files (though you can
create them if you want to: see the section on “Monitor Mods™).

(3 Scientiflc notation is not the default format for REAL output.

HOW TO USE THE EDITCR

The function of the Editor is to help you prepare a series of pro-
gram statements. The text which you type is collected into a “text
workspace'' in your computer’'s memory, which can then be com-
piled or saved by the Monlior. Since the video screen is not big



enough to show the entire contents of your workspace, it functions
?‘3 a movable window, displaying 15 lines of the workspace at a
ime.

You can correct errors before pressing [ENTER] by using the
backspace key to erase characters, or you can press shifted left- or
right-arrows to move the cursor in the line without erasing, and
then typing over the part of the line which you want to change.
(Note that the arrow keys, like all keys, repeat if you hold them
downy). The Editor sends the entire line to the workspace when you
prass [ENTER], even if the cursor is not at the end of the line.

The up- and down-arrows move the cursor vertically on the
screen. When the cursor gets to the top of the screen, it will push
the top of the window up, revealing eariler lines in the workspace (if
any}. In the same way, you can push the window down through the
workspace with the down-arrow.

You can change a line of text in the workspace by moving the
cursor to the line (with arrow keys), typing the corrected text, and
then pressing [ENTER] to send the new version to the workspace.
It's very important to press [ENTER] if you don't, the new line
doesn’t get sent to the workspace. If you move the cursor away
from the line with arrow keys, without pressing [ENTER], the
changes which you made will be canceled ({the window will stiil
show the changed version of the ling, but you can see the actual
state of the workspace by pressing [BREAK] and [X]).

The unshifted right-arrow is a tab key, with tab stops at 2-space
intervals in the ling. For legibility, it’s very important to indent your
PASGCAL programs so that statements at the same nesting level are
Indented to the same position.

Pressing [BREAK] will cause a list of cholces to appear at the
bottom of your screen. You can choose one by pressing the first jet-
ter of your choice. To return to normal Editor mode, press [X].

H - Homes the cursor to the beglnning of the workspace.

N - Displays the next 15-line page of text (as If you had moved the
ciurso}r to the bhottom of the screen and pressed down-arrow 15
times).

P - Displays the previous 15-line page of text (if any).

M - Returns to Monitor mode.

{ - Inserts a blank line at the cursor position.

D - Deletes the line where the cursor is.

A - Enables the Autotab conditlon to help you format your
PASCAL programs. The Edltor will remember the position to which
you most recently tabbed, and automatically indent to that point
whenever you press [ENTER]. This allows you o type a series of
statemnents at the same nesting level without repeated tabbing.
Backspacing to the left of the automatic tab poslition will set a new
automatic position for following lines. Clearing the Editor will
cancel the Autotab condition.



MONITOR MODE

In addition to [E], which puts you into the Editor mode, your
PASCAL-80 monltor racognizes the following commands (you don't
have to press [ENTER] — just press the appropriate key),

Q - Returns you to DOS READY {to consult the directory, for ex-
ample). You can return to PASCAL with the contents of the Editor
intact: just type PASCAL, and hold the [ENTER] key down until the
PASCAL-80 system has loaded and the menu of choices appears.
Then press [E] to return to your text in the Editor.

K - Erases the contents of the Editor. To prevent accidents, the
system will ask you if you really do want to clear the editor. Just
press [Y] if you do. {If you don’t, press [N] and nothing wlll happen).

R - Will run the program in the Editor (the *source” program). The
program will be compiled if it hasn’t already been compiled, or if (1}
a pravious execution of the program terminated abnormally, or (2)
you have returned to the Editor since last running the program, or
(3) you have loaded source text into the Editor since running the
program.

C - Just compiles the program in the Editor, without trying to ex-
ecute it.

S - Saves the source program in the Editor to disk — the system
will ask you to type a filespec.

L and A - Load text into the Editor from a disk file which you
created earlier with the S command. Use L if you want to erase the
text that’s in the editor, A if you want to add the disk file to the end
of the text. Note, however, that If the Edltor ¢ontains a complete
program, the compiler will stop when it gets to the flnal "END."
statement, even if there |s more taxt In the Editor.

W - WHll create a machine-code “object” program file which you
can later execute with the X command. The advantages of saving a
program as object code rather than source text are (1) it takes less
disk space (2) more memory is available during execution, since the
program doesn’t have to share space with the compiler and source
program, and (3) you save the time needed to recompile the pro-
gram.

X - Executes an object program which you created earller with
the W command. To get maximum memory during execution, the
system loads the program into memotry on top of the compiler and
monitor sections of PASCAL-80, thereby destroying them. For-this
reason, you will return to DOS READY rather than Monitor mode
after execution is complete.

The message “BAD FORMAT” durlng a disk operation means
that you are trying to execute a file which does not contaln a
PASCAL-80 object program, or to load a file into the Editor which
does not contain source text,



COMPILER OPTIONS:

You can give Instructions to the compiler by typing one of the
tollowing six Instructions before the keyword PROGRAM. The com-
piler recognizes only the first letter of an option, and options may
be separated by any delimiter, including spac¢es or carriage-
returns; M/H/Z will have the same effect as MEMORY HARDCOPY
ZERO.

Four options affect the way in which the compiler lists the
program:

HARDCOPY causes compiler output to be routed to the line
printer.

NOLIST suppresses the compller listing (except for error
messages).

MEMORY makes each line of compller output include net only
the number of bytes of code compiled so far, but also the number
of byes of free stack space available to the compiler and the
number of bytes of symbol table space available {in hex).

CODE makes the compiler print each byte of the object program
pseudo-code as it is complled. This is only an approximate listing
of the object code, for two reasons: (1) in some situations, such as
forward jumps, the compiler generates dummy place-hoiders,
which it changes to the correct values later, and (2) the pseudo-
code Is self-relocating, and the relative addresses generated by the
compiler are replaced by absolute RAM addresses befors the ex-
ecution of each block.

Two options affect the way a program will be executed:

ZEROQ: A program compiled with this option will set all variables
to zero before execution. If you don’t use this option, variables will
contain whatever happens to be left in memory from the previous
program: REAL variables will contain weird and wonderful values
which may print as punctuation marks rather than digits.

VERIFY: The program will verify all write operations to disk files.
Selecting (or not selecting) the VERIFY option overrldes any choice
made with the TRSDOS VERIFY command.

LIMITATIONS OF PASCAL-80

Variant records are not implemented, nor is the WITH statement.
Paointer variables (along with NEW and DISPOSE), and flle window
(buffer) variables are not included, nor are the associated GET and
PUT procedures. READ and WRITE may be used with non-text files,
however: see the section on File Handling. The concept of packed
and unpacked structures does not apply, since all structures are
packed on byte boundarles (PACKED is not a keyword, and the pro-
cedures PACK and UNPACK do not exist).

The procedure PAGE Is not included, but the statement
WRITE(LP, CHR(12)) may have the same effect, depending on your
printer conflguration.



Structures of files (such as ARRAY OF FILE) do not exist in
PASCAL-80.

PASCAL-80 does not permit the identifier of a procedure or fung-
tion to be passed as a parameter to another procedure or function.
The total size of an expression passed as a value parameter may
not exceed 510 bytes (this limitation does not apply to VAR
parameters).

Sets may have up to 256 members: if the elsments of a set are
numeric, they must be in the range 0..255.

EXTENSIONS TO STANDARD PASCAL

Arrays of characters may be printed with a single statement: if
STRING is declared as ARRAY (.1.10.) OF CHAR, then WRITE
(STRING) is equivalent to

FOR 1: =1 TO 10 DO WRITE (STRING (L))

In assignments and comparisons of character arrays, a siring
constant on the right-hand slde may be shorter than the item on the
left {it will be padded out with blanks as necessary}. In the example
above, STRING:=‘NAME’' is valid, and after this statement,
STRING>NA' will be TRUE. (The right-hand argument must have at
least two characters).

PROC and FUNC are permitted as abbreviations for the
keywords PROCEDURE and FUNCTION.

Predefined constants include MININT (-32768) and PI, in addition
to the standard FALSE, TRUE, and MAXINT.

In addition to the type REAL (14-dlgit precision), variables may be
declared as REALS (six-digit precision), to save space in large ar-
rays (four bytes instead of eight). No signiflcant time is saved,
however, since calculations are still performed with 14-digit preci-
sion. REALSG variables which are not members of an array or record
may not be passed to a procedure or function as value parameters.

The standard files INPUT and OUTPUT need not be included In
the PROGRAM statement {and the program name is also optional).
In addition to these files, PASCAL-80 provides a predefined file LP
for the lineprinter.

The following procedures are provided:

CLS clears the screen.

POKE (ADDRESS, VALUE) places a value (0 to 255) Into a memory
location (locations above 8000H are referenced with negative
values, as In the BASIC POKE instruction.

CLOSE and SEEK are described in the section on File Handling.

The following functions are provided (in addition to those of
Standard Pascal):

INKEY returns the vaiue (type CHAR) of any key pressed. If no
key was pressed, it returns CHR{0).

CALL (ADDRESS, VALUE) places a value {0 to 255) into the A
register, and CALLs the address. It returns the contents of the A
register after the call (type INTEGER).



MEM returns the number of bytes of free memory (type
INTEGER}.

PEEK (ADDRESS) returns the contents of the address.

FP {(EXPRESSION) returns the fractlon part {also called “man-
tigsa” or “significand”) of a floating point number {type REAL).

EX (EXPRESSION) returns the exponent of a floating point
number {type INTEGER).

PASCAL-80 extends the CASE statement in two ways; an ELSE
clause may be included, and will be executed if no other case is
satisfied; If no case is satisfied and there is ne ELSE c¢lause, con-
trol simply falis through to the next statement, with no error
indlcation.

Qutput format differs slightly from Standard Pascal. Both REAL
and INTEGER expressions are printed with the statement WRITE
{expression : fleldwldth : digits). A fleldwidth of -1 calls for sclen-
tific notation (“digits” is ignored, If present); a fieldwidth of 0 pro-
duces the default format, which is also used if you don’t spacify
any format parameters: the number |s printed with a space before
It, and with as many digits after the decimal point as necessary, up
to the maximum precision of the computer (14 significant figures).
Fieldwidth and digits parameters are evaluated module 256,

You can freeze printed output during execution by holding down
the [CLEAR] key. You can freeze the compiler output by holding
down the space bar.

READING FROM THE KEYBOARD: FILE (INPUT)

Pascal was originally designed for use with stream input (such
as punched cards), rather than for “interactive” input directly from
the keyboard. To allow Iinteractive programs, the procedure
READLN and the functions EOF and EOLN work differently for in-
put from the keyboard than for input from disk files (see the discus-
sion in Grogono, p. 210). Note that if no file Is specified, READ,
READLN, EOF, and EOLN are assumed to refer to the keyboard:
READ(INPUT X} is equivalent to READ{X).

In PASCAL-80, EOLN(INPUT) is true if there are no unread
characters remaining from the last tine which you typed in
response to a request for Input. In partlcular, EOLN is true when a
programn begins execution, and after executing READLN without
pargmeters. This means that if the first statement of your program
reads:

WHILE NOT EOLN DO BEGIN READ(CY, WRITE(C) END
nothing will get read, since EQLN is initially true. To read a line of
characters, use REPEAT instead:

REPEAT READ(C), WRITE(C) UNTIL EOLN

Using READLN with parameters (READLN(X), for example), will
skip any unread characters in the last line you typed, and prompt
you for another line.

In PASCAL-80, EOF |s true if (and only if) the next character due
to be read Is a special end-of-file marker produced by pressing the



[CLEAR] key: it prints as a graphics square {(hex 8F}, and should ap-
pear at the end of a line, following the data. Using this marker
allows you to simulate the end of a punched card deck, and use
programs written orlginally for stream-oriented input, without hav-
ing to convert thern for interactive input.

If you are reading from the keyboard into a numeric variable, and
the first non-blank character encountered is not anumber (or- or +
), PASCAL-80 will print the message REDO, and prompt you to
enter a valid numeric value. You will also get the REDQO message if
your program is reading into an integer variable and you type a non-
integer (or a number outside the range -32767 to + 32767).

You can interrupt a program while it is waiting for imput by
pressing the [BREAK] key: this will produce the message BREAK
AT 0000,

FILE HANDLING

If your program uses disk flles for input or output, Pascal re-
quires that you declare these files in the PROGRAM statement.
Since the rules for Pascal identifiers differ from the rules for
TRSDOS filespecs, PASCAL-80 allows you to equate a Pascal
filename with a fllespec, using the following notation:

PROGRAM EXAMPLE (FILEA:DATAFILE/DAT:1’);

Any reference to FILEA in your Pascal program will refer to a file
on disk 1 named DATAFILE/DAT. This feature is optional, if you
don't need drivespecs or file extensions:

PROGRAM SIMPLE (FILEA, FILEB);
will use FILEA and FILEB as TRSDOS filenames, on drive zero.

Don’t forget that Pascal also requires file names to be declared
as variables, either with the standard identifier TEXT, or as FILE
OF..., for record-oriented files.

TEXT FILES

WRITE {filename, expression) writes the expression to the flle. In
PASCAL-80, it is not necessary to expiicitly open the flle: WRITE
will autornatically open the file, and witl create it if it does not exist
on the disk. A write statement always adds text at the end of a file:
it will skip ahead to the end-of-file position before writing. You can
use fieldwidth and digit parameters: the same characters are writ-
ten to the text file as would be written to the video screen by WRITE
(expression). You can write several expressions with one WRITE
?‘lazte;'nent: WRITE (filename, expressionl, express-

on2...).

WRITELN ({fitename, expression) works like WRITE, but adds an
end-of-line marker {ASCII 13) afterwards.

READ (tllename, variable) reads a number from the file into a
numeric variable, or a character Into a character variable, if the file
does not exist on the disk, an error occurs (FILE NOT FOUND). If
the file is not open, PASCAL-80 opens it, and starts reading at the



beginning. Subsequent READ statements will continue to read
through the file. A MISMATCH error occurs if you try to read a nomn-
numerlc string into a numeric variable, or a non-integer into an in-
teger varlable.

READLN (filename, variable) reads a number or character from
the file, then skips to the next end-of-line marker.

RESET (filename) closes a file, then reopens it at the beginning.
A READ statement will now begin reading at the first character in
the flle {but a WRITE statement will skip ahead to the end of the file
again). If the file does not exist on the disk, RESET will ¢create it.

CLOSE (filename) closes the fite — this is useful in case you
want to remove a disk from the drive during the execution of a pro-
gram, CLOSE whthout parameters will close any file which is open.
All files are automatically closed when a program stops exscution,
or if an error occurs.

REWRITE (filename) kills the file and releases the disk space; it
then reopens a new {empty) file, with the same name.

EOF (fllename) is TRUE if the file is positioned at an end-of-file
marker {hex BF). If the file is not open, EOF will cause It to be
opened, and will return the value FALSE, unless the file is empty.

EOLN {filenama} is TRUE if the file is positioned at an end-of-line
marker ({hex OD). The flle will be opened if it is not open.

RECORD-ORIENTED FILES

PASCAL-80 also Ists you use WRITE and READ with non-text
files. The syntax is: WRITE (filename, variable, varlable...) and
READ {filename, variable, variable..}. The variable(s) and filename
must be of “identical” type (as defined in Pascal — see page 139in
Grogono).

Assume the following declarations:

TYPE BIGONE = ARBAY (. 1..50 ) OF REAL,;

VAR FILEA : FILE OF BIGONE; VARNAME : BIGONE;

You can now write the variable to the file with WRITE (FILEA, VAR-
NAME). The WRITE statement will open (or create} the file, if
necessary. Following WRITE statements will add additional copies
of the variable after the first one.

READ {filename, variable} will read the variable from the file. The
file will be opened, if necessary (but won't be created). The file
polnter is advanced after each read.

SEEK (expression, filename) will position the file to the record
whose number is given by the expression {the first record In each
file is numbered G, the second is record 1, etc)) If necessary, the file
will be opened before the seek. It’'s not possible to SEEK beyond
the §5535th byte of a file,

RESET (filenarme) may be used with non-text flles: it is equivalent
to SEEK (0, filename).

REWRITE (filename) and CLOSE (filename) are the same for noh-
text files as for text files. EOLN, EOF, WRITELN, and READLN are



not defined for non-text files. Attempting to read beyond the end of
a non-text file will give undefined results.

Note that WRITE works differently in text and non-text files: in a
text file, data is always added at the end, but in a non-text file,
reading and writing occur at the same place, as positioned by a
SEEK or RESET statement. This permits you to update the contents
of a record by overwrlting it.

Files may be closed and reopened with a different type: a text file
may be later read as FILE OF CHAR, for example.

COMPILATION ERROR MESSAGES:

The compiler will stop when it finds an error, with an arrow point-
ing to the place where it discovered that something must be wrong.
This will often be in the line after the error (for exampie, if a
semicolon is missing after a statement). A missing END may not be
discovered for several lines (thase are pesky to find, but it helps if
you indent nesting levels properly).

BAD OPTION

PASCAL-80 assumes that anything which you type before the
keyword PROGRAM i3 an instruction to the compiler: see the sec-
tion on Compiler Options.

SYNTAX ERROR

Something's wrong, but the compiler doesn’t know what. This er-
ror often means that you left out a semicolon between statements
or tried to begin a number with a decimal point (PASCAL requires
“0.2”, I"IDt 31-2!!)'

UNDECLARED

An identifler {usually a variable) or a labsl hasn’t been declared;
PASCAL requires that you declare ali variables (in a VAR state-
ment) before you use them,

DUPLICATE

You declared a name twlce in the same block. Or you tried to
declare a filename with the same name as one of the standard iden-
tifiers (Pascal does allow you to redefine these standard iden-
tiflers, but not as filenames.)

BAD RANGE

An array or subrange has been declared with an illogical range
(such as 10..1),



11

REAL OVERFLOW

A real constant has a magnitude outside the permitted range
(such as 1E99 or 1E-99).

BAD TYPE

An illegal type declaration. Note, for example, that PASCAL re-
quires that parameters be of a predefined type: TYPE RAN =1.. 10;
PROC TEST (PAR:RAN) is OK, but not PROC TEST (PAR:1..10). Note
also that PASCAL-80 does not support certain structures, such as
FILE OF FILE.

OUT OF MEM.

Usually means that the compiler has run out of symbol table
space: you can use the MEMORY compiler optlon to keep track of
how much space is left. It can also occur if the compller runs out of
space for storing labels {maximum of 63) or disk filespecs (max-
Imum of 12). Also, a program may not contain more than 252 dif-
ferent scalar types, and a scalar may not have more than 255
elements. Occasionally a short but deeply-nested program may
cause the compller to run out of stack space before it runs out of
symbol table space. If this happens, it will print “OUT OF MEM”,
and then immediately assign more space to the stack (at the ex-
pense of the symbol table) and start the compilation over again.
The additional stack space will continue to be avallable in future
compilations until you reload the system.

MISMATCH

An attempt to perform an operation or assignment with elements
of Incompatible types {such as ‘X’ + 2). Note that PASCAL allows in-
tegers to be asslgned to real variables, but {unllke BASIC) it does
not allow real values to be assigned to Integer variables {use the
TRUNC function). Incidentally, -32768 is of type REAL under the
rules of PASCAL syntax (it’s the negative of 32768, which is a REAL
constant), and cannot therefore be assigned to an Integer variable.
A mismateh ¢can also result from incompatlible file operations, such
as EOF{OUTPUT) or an attempt to reference a file name which has
not been declared in a VAR statement {since the compiler knows
the name only as a filespec, and not as a PASCAL identlfier).

UNRESOLVED GOTO

The destination of a GOTO statement doesn’t exist in the pro-
gram. It’s always printed at the very end of compilation, since the
compller keeps hoping that the label will turn up...



STRUCTURE TOO BIG

An attempt to declare a set with more than 256 members (or with
integers outside the range 0..255). Or an attempt to allocate more
than 65535 bytes of storage to a block (usually in the form of ar-
rays). Or a structure that is too deeply-nested for the compiler to
handie (ARRAY OF ARRAY OF ARRAY...to a depth of about 30). Or
an attemnpt to pass an array (or record) with more than 510 bytes as
a value parameter (this restriction does not apply to variable
parameters).

BREAK
You stopped the compilation by holding down the [BREAK] key.
RUN-TIME ERROR MESSAGES:

When a run-time error occurs, executlon stops, and the system
prints (in hex) the location where the error occurred: this location
corresponds to the number printed at the left. of each line during
compilation, and allows you to find the approximate location of the
error.

Some run-time errors don't need much explanation: QUT OF
MEM., DIV. BY 0, DISK ERROR, BEYOND EOF. Less self-
explanatory errors are:

BAD RANGE

A subscript of an array, or the value of a subrange-type variable
is outside the range which you specifled in your program.

REAL OVERFLOW

The rasult of a computation has a magnitude outside the range
1E-64<=N < 1E+63 {this includes both underflow and over-
flow conditions).

INT. OVERFLOW

The result of a integer operation is outside the range -32768
< = n < =32767: note that PASCAL (uniike BASIC) does not
automatically convert a result to REAL if it is too big.

MISMATCH

An invalld character was found while attempting to read a
number from a disk flle, or a non-integer was found when trying to
read into an integer variable. If this happens when reading a
number from the keyboard (file INPUT), the message REDQ is
printed.

12



STRUCTURE TOOQ BIG

An attempt to create a set at run-time with more than 256
elements: for example (.A..B.), if A=1 and B8=2300, or an attempt to
assign a bigger set to a set varlable than that variable was declared
to have room for. Since space is allocated to sets in multiples of 18
elements, a set daclared as 0..10 may actually accept elements up
to 15 without an error,

ILLEGAL JUMP

It's not legal to jump (with GOTO}into a FOR loop or CASE state-
ment or into an inactive procedure or function. In general, you can
jump from a deeper nesting level to a shallower level jout of a FOR
loop, for example), but you can’t Jump deeper. If you jump out of a
function without assigning a value to the functlon, the value 0 will
be returned. PASCAL-80 will allow you to jump from inside one FOR
loop to another one at the same nesting level, but the valug of the
control variable will be undefined.

OPERATION UNDEFINED

The value of a function is not defined: for example SQRT{(-1). Ora
procedure or function was declared using a forward reference but
never actually defined. Or you tried to use < or>>as set operators.
This message is also likely to be printed if the system gets lost
after a bad disk load or memory fault.

Specifications for PASCAL-80.

Requires Model I, one disk {or more), 32K (48K recommended).
Model 1L available soon.

Includes RECORD, SET {to 256 members), FILE (text and record-
oriented), n-dimensional ARRAY (and ARRAY OF ARRAY, etcl),
global GOTQ, ELSE in CASE statements.

BCD arithmetic accurate to 14 digits (including log and trig func-
tions); six digits optional.

23,600 bytes available for user programs in 48K (33,000 available
at run-time). Fast compiler {written in native code) compiles over
1000 lines per minute from easy-to-use text editor. Programs may
be compiled directly into memory and run without using in-
termediate disk files, if desired. Error messages are in plain
English.

Types: boolean, infeger, char, real, realb, text.

Constants: maxint, minint, true, false, pi.

Files: input, output ip.

Procedures: read, readin, write , writeln, reset, rewrite, close,
seek, ¢ls, poke,

13



Functions: abs, arctan, call, chr, ¢os, eof, eoln, exp, inkey, In,
mem, add, ord, peek, pred, round, sin, signif, sqr, sqrt, sucg, frunc,

Does not Implement variant records; pointer and window
variables; functions or procedures used as paramenters; all struc-
tures are packed {(on byte boundaries).

Recommended text: Peter Grogono, Programming in
Pascal Addison-Wesley, 1980).

14



6 South Street, Milford, NH 03055



	Pascal-80 (19xx)(Ramware)_Page_01_Image_0001.tif
	Pascal-80 (19xx)(Ramware)_Page_02_Image_0001.tif
	Pascal-80 (19xx)(Ramware)_Page_03_Image_0001.tif
	Pascal-80 (19xx)(Ramware)_Page_04_Image_0001.tif
	Pascal-80 (19xx)(Ramware)_Page_05_Image_0001.tif
	Pascal-80 (19xx)(Ramware)_Page_06_Image_0001.tif
	Pascal-80 (19xx)(Ramware)_Page_07_Image_0001.tif
	Pascal-80 (19xx)(Ramware)_Page_08_Image_0001.tif
	Pascal-80 (19xx)(Ramware)_Page_09_Image_0001.tif
	Pascal-80 (19xx)(Ramware)_Page_10_Image_0001.tif
	Pascal-80 (19xx)(Ramware)_Page_11_Image_0001.tif
	Pascal-80 (19xx)(Ramware)_Page_12_Image_0001.tif
	Pascal-80 (19xx)(Ramware)_Page_13_Image_0001.tif
	Pascal-80 (19xx)(Ramware)_Page_14_Image_0001.tif
	Pascal-80 (19xx)(Ramware)_Page_15_Image_0001.tif
	Pascal-80 (19xx)(Ramware)_Page_16_Image_0001.tif

